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Abstract—Inspired by cyber-security applications, we consider the problem of detecting an infection process in a network when the

indication that any particular node is infected is extremely noisy. Instead of waiting for a single node to provide sufficient evidence that it

is indeed infected, we take advantage of the graph structure to detect cascades of weak indications of failures. We view the detection

problem as a hypothesis testing problem, devise a new inference algorithm, and analyze its false positive and false negative errors in

the high noise regime. Extensive simulations show that our algorithm is able to obtain low errors in the high noise regime by taking

advantage of cascading topology analysis.

Index Terms—Epidemic detection, hypothesis testing
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1 INTRODUCTION

INTERCONNECTION is at the core of the functionality of our
modern infrastructure, spreading ideas, technology and

information. But network and virus attacks, from denial of
service, to theft of personal information, and even to state-
driven cyberwarfare, are problems of increasing relevance
and potential threat. An early diagnosis of a spreading epi-
demic is critical. Anti-virus software relies on and searches
for the signature of a knownworm, malware or virus—a reli-
able signal of infection. But how do we intercept malware
spread in actionable time-scales, and critically, before we
know what is spreading—and thus before we have malware-
specific signatures? In this paper we ask what can be done
when such strong signatures do not exist, or in any case are
not known in time for early detection. In the absence of sig-
natures that pinpoint the presence of malware, or expert
medical opinion and tests that diagnose human illness, we
necessarily resort to not signatures, but indications. Mal-
ware, similarly to many human illnesses with long dor-
mancy periods, produces slight deviations in system
behavior, for example, hard disk spin up, or a spike in net-
work activity, or a function call accessing photographs and
immediately afterwards SMS. And as with human illness,
these indicators may be extremely weak, possibly symptom-
atic of nothing abnormal, and even if caused by malware,
they might quickly disappear if the malware goes dormant.

We ask: can we use indications of abnormality—we call
these flags– that are so weak that on their own they are

statistically indistinguishable from noise, to make an accurate
global diagnosis about the presence of a spreading epi-
demic? The central conceptual contribution of this paper is
that by harnessing the dynamics of the spread, even these
weak signals can be used to diagnose an epidemic spread
accurately and quickly.

Our model, defined in Section 3, is an extreme model of
the scenario discussed above. We adopt such an extreme
model precisely to bring the focus on the power of network
and the signature of the spread itself to reveal the presence
of an epidemic. We assume that under “normal” (unin-
fected) behavior, a given node produces flags according to a
Poisson process. Infections proceed according to an SI epi-
demic. We assume that upon infection, a single flag is
raised, after which point the henceforth infected node
resumes the same (random) behavior pattern prior to its
infection. The problem is to decide, based on the flags,
whether there is an epidemic spreading in the network, or if
the flags’ appearance are consistent with normal behavior.
It is easy to see that viewed in isolation, a single node’s flag
pattern offers little more statistical strength than random
guessing. The network spread, however, correlates these
flags; we characterize when this correlation is detectable,
and when it allows us to separate the two hypotheses with
high probability. Our results depend on the network topol-
ogy, and indicate that the more local expansion a network
possesses, the easier epidemics are to detect. The analysis of
our main algorithm hinges on analyzing the spread of SI
epidemics on different graph topologies; for this, we lever-
age results from first passage percolation on grids [1], [2],
[3], as well as limit theorems for random graphs [4], [5].

2 PRIOR AND RELATED WORK

Recently, numerous works have explored the epidemic
spread characteristics, such as the dependence of the infec-
tion rate on the topology (e.g., [6]), or the time it will take an
epidemic to be detected by a fixed sensor network [7]. These
are forward problems: given the initial conditions, predict the
epidemic evolution.

� E. A. Meirom, S. Mannor, and A. Orda are with the Department of
Electrical Engineering, Technion - Israel Institute of Technology, Haifa
3200003, Israel.
E-mail: bloodymeli@gmail.com, {shie, ariel}@ee.technion.ac.il.

� C. Caramanis and S. Shakkottai are with the Department of Electrical and
Computer Engineering, University of Texas at Austin, Austin, TX 78712.
E-mail: constantine@utexas.edu, shakkott@austin.utexas.edu.

Manuscript received 18 Aug. 2016; revised 16 Apr. 2017; accepted 22 June
2017. Date of publication 17 Oct. 2017; date of current version 11 Dec. 2018.
(Corresponding author: Eli A. Meirom.)
Recommended for acceptance by M. Lelarge.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TNSE.2017.2764444

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2018 313

2327-4697� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6995-6348
https://orcid.org/0000-0002-6995-6348
https://orcid.org/0000-0002-6995-6348
https://orcid.org/0000-0002-6995-6348
https://orcid.org/0000-0002-6995-6348
https://orcid.org/0000-0001-5561-6599
https://orcid.org/0000-0001-5561-6599
https://orcid.org/0000-0001-5561-6599
https://orcid.org/0000-0001-5561-6599
https://orcid.org/0000-0001-5561-6599
mailto:
mailto:
mailto:
mailto:


Our work focuses on the inverse question: given an
online, dynamic, noisy map of the network activity, infer, at
each point in time, if there was an epidemic outbreak. In
addition to correct detection, early detection is important.
Related inference questions have gained considerable atten-
tion in other contexts, such as estimating the epidemic
parameters [8], [9], [10], or the identification of the epidemic
source (e.g., [11], [12], [13], [14], [15]).

A similar inference problem is presented in [16], [17],
[18], [19]. However, these works address a static problem:
equipped with a static network map of reporting nodes,
containing a large number of false positives (and false nega-
tives, should an epidemic occur), decide whether an epi-
demic occurred or not. These works do not address the
evolution of the epidemic and accessible information in
time. Furthermore, The problem at hand is more difficult, as
the epidemic is hidden both in the time dimension—every
single epidemic flag is indistinguishable from the multitude
of normal activity flags surrounding it in time, and in the
network dimension—we detect an epidemic even when the
fraction of infected nodes is infinitesimally small with
respect to network size.

3 THE BASIC MODEL AND PROBLEM

Let G ¼ ðV; EÞ denote our graph, with V the set of n nodes,
and E the set of edges between nodes in V. The next two def-
initions specify normal and epidemic behavior.

Definition 1. Under normal behavior, node v 2 V outputs
flags independently of all other nodes, and according to a Pois-
son process of rate m. In a time period ½0; t�, the expected num-
ber of flags raised by any given node is mt. We assume that the
Poisson process is time-homogeneous, though this does not
seem to be critical for our results.

Definition 2. In the case of epidemic, we assume that infections
spread over edges according to a standard SI model: when a
node becomes infected, it starts an independent exponential clock
of rate � on each incident edge.When a clock expires, it infects its
other incident node (if not already infected). The instant a node
becomes infected, it outputs a flag deterministically. Prior to this
event, and after this event, the node’s behavior is precisely
“normal” behavior as described above (see Fig. 1).

The motivation for this setup is that flags are some (very
weak) indicator of anomaly. For instance, consider malware
spreading over a mobile network. A flag could correspond
to “increased network activity over a one-second duration.”
While this flag is symptomatic of a malware, various benign
applications could also generate such a flag, and hence we
model normal nodes raising flags as a Poisson process at
rate m: An infected node will also output such a Poisson
sequence of flags (due to benign applications); however in
addition, may outputs flags due to malicious behavior. We
take the extreme view here, and model malware as provok-
ing exactly one additional flag when the node becomes infected.
Crucially, this extra flag is indistinguishable from a
“normal” flag to any observer.

Thus, from a single node’s perspective, we are trying to
distinguish between a Poisson process at rate m; and another
process which is a Poisson process at identical rate however
with one additional flag embedded within the infinite Poisson

flag train at some arbitrary instant of time! As is apparent,
this task is statistically impossible with any degree of confi-
dence. Surprisingly, we see that by appropriately correlating
across a network, we can “amplify” the epidemic signal, and
indeed distinguish between normal and infected networks
with high probability.

We let F
ðiÞ
normalðt1; t2Þ denote the number of flags output

by node i in time ½t1; t2� under normal behavior, and
F
ðiÞ
normalðtÞ , F

ðiÞ
normalð0; tÞ; thus F

ðiÞ
normalðtÞ is a Poisson random

variable of rate mt. Let IðiÞðt1; t2Þ denote the indicator func-
tion that node i became infected in the interval ½t1; t2�, and let
IðiÞðtÞ , IðiÞð0; tÞ. Thus, the total number of flags by node i in
interval ½0; t� is given by F

ðiÞ
totalðtÞ ¼ F

ðiÞ
normalðtÞ þ IðiÞðtÞ. Indeed,

note that as long as mt ¼ Oð1Þ, the probability of correctly
diagnosing an infection from the flags in ½0; t� is bounded
away from 1, and for m fixed, this correctness probability
quickly decays to 50 percent (that of random guessing) as t
grows. While only the process F

ðiÞ
totalðtÞ is observable, we

denote byF
ðiÞ
normalðtÞ the number of flags due to normal behav-

ior in both the epidemic and non-epidemic setting.
We show that with knowledge of the spreading dynam-

ics and the network structure, and knowledge of the flags
raised, we can correctly (with probability tending to 1) diag-
nose the presence of an epidemic.

The Testing Problem. We wish to distinguish between no
epidemic in our graph at any point during the time win-
dow being considered, versus the case of some infection
starting at some node, at some point during our time win-
dow. We can reduce this problem to a simple testing prob-
lem as follows. Consider the universe of only two possibilities.
Assume there are two possible events in the universe: H0:
No epidemic originated at any node in time interval ½0; t�
(so all nodes normal); and H

ðiÞ
epidemic: An epidemic started at

node i at time 0. The fundamental hypothesis testing prob-
lem we solve uses the network structure and the flags
F
ðiÞ
totalð0; tÞ raised in ½0; t� to separate these hypotheses.

Now, consider the more general universe with more than
two hypotheses, where we observe the system over a time
interval ½0; T þ t�; where either no epidemic began at any
node in ½0; T �, or an epidemic began at some node and at
time t 2 ½0; T �:

Fig. 1. Malware Spread: A flag is an indicator of abnormality, such as
increased network activity over a one second time window. While a node
will exhibit such a flag when it gets infected, it is clear that the node will
exhibit such flags even when not infected (usual network usage). In our
model, each node has a baseline process that generates noise flags
(usual usage) as a Poisson process at rate m (shown by blue impulses).
The hypothesis testing question is the following: Is there a “causal tree”
of epidemic flags (one flag per node shown by red impulses) overlaid on
top of this baseline noise? In other words, an infected node manifests a
epidemic flag exactly once when it gets infected, each of its neighbors
manifest a flag exactly once when they get infected and so on. However,
the one extra flag, even if present, is indistinguishable from a noise flag
(i.e., impulse’s color in the figure is not revealed).
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While all processes are continuous, there is an inherently
discrete event-driven clock defined by each raised flag, and
by definition, epidemics can only begin at the raise of a flag.
Consider a series of flags fti; vig, ordered lexicographically
by increasing time ti and source node vi. Given an algorithm
that detects a time-zero epidemic given flags in ½0; t�, any
monitoring process would apply the (time-shifted) algo-
rithm over ½t1; t1 þ t�, ½t2; t2 þ t�; . . .. The false positive rate
requires a union bound over all flags in ½0; T �. This quantity
is proportional to jV j and T . We show that the concentra-
tions involved are exponential, which immediately implies
that for essentially all results presented here, we can suc-
cessfully perform early detection.

Therefore, we focus on the testing sub-problem: no epi-
demic occurs during time ½0; t�, or, alternately, an epidemic
begins at some specific node i 2 V at time 0. The type I error,
or false positive probability – the probability of false
detection—is denoted by eIði; tÞ. Type II error, or false nega-
tive probability—the probability of missed detection—is
denoted by eIIði; tÞ. If the node i is fixed, we drop the index
and refer to eIðtÞ and eIIðtÞ.

The key parameters in this definition are t and jVj. The
larger the value of t, the smaller the probability of a false
negative, but the number of potentially infected nodes is
greater, failing early detection. The larger the graph, and the
larger the overall window of time over which we wish to
control false positives, the more difficult it is to do early
detection.

4 ALGORITHM AND META-THEOREM

Intuition: Testing with Oracle Windows: The statistical fluctua-
tions in the number of normal flags raised in ½0; t� under
normal behavior is Oð ffiffiffitp Þ:�AŞ much greater than the single
“extra” flag raised due to epidemic. The central idea of the
algorithm is to correlate events using the network structure.
Suppose an oracle reveals there is an epidemic that began
from a specific node i 2 V at some time t0 (which implies
that there must have been a flag at node i at time t0). We
shift time so t0 ¼ 0. Suppose further, that the oracle reveals
the order and the time slices of width D within which each
node was infected. Looking at those small time slices, we
should see at least one epidemic flag in each. Now, in any
fixed D-width time slice, the probability of a flag under nor-
mal (no epidemic) behavior is Poisson of rate mD. If D is
small (such that mD� 1), independence of the noise pro-
cesses across nodes implies that the number of flags under
the nomal hypothesis is roughly mDjV j: On the other hand,
with the epidemic hypothesis, the number of observed flags
observed is roughly ðmDjV j þ jV jÞ; which is much greater
than the expected number of flags under the normal
hypothesis. Further the excess flags are very unlikely to
occur by a random fluctuation. Unlike the single node set-
ting, the signal now is “amplified” by the oracle windows,
and is much stronger than the noise.

Identifying without an Oracle: As we have no such oracle,
the key is to use the dynamics of the spread and the topol-
ogy of the graph, to determine which nodes to look at, in
which order, and for which time slices. Note that we cannot
take the window size to be very small or we would miss
most of the epidemic-related flags. Specifically, even with

network knowledge, we will be in a setting where D ¼ vð1Þ;
and typically increases with jV j: Thus, the oracle intuition
above breaks down because the noise within the window is
mDjV j; which is order-wise larger than the signal with
strength jV j.

However, as we will see below, we can still detect an epi-
demic with high probability in this setting. The key idea is
that the signal needs to rise only above the standard deviation of
the noise, and need not be stronger than the mean noise. Continu-
ing with the oracle notation, a more nuanced view indicates
that under the normal hypothesis, the number of flags is
roughly ðmDjV j � ffiffiffiffiffiffiffiffiffiffiffiffiffi

mDjV jp Þ: Under the epidemic hypothe-
sis, the number of flags is ðjV j þ mDjV j � ffiffiffiffiffiffiffiffiffiffiffiffiffi

mDjV jp Þ: Thus, it
is clear that if jV j ¼ vð ffiffiffiffiffiffiffiffiffiffiffiffiffi

mDjV jp Þ; detection is possible even
in the presence of noise that seemingly drowns the signal.
Additionally, even if we do not observe all nodes, and the
windows are wrongly chosen for many of the observed
nodes, the epidemic can be detected as long as the observed
signal (number of epidemic flags within the estimated win-
dows) rises above the standard deviation of the noise within the
estimated windows. The FlagCounter algorithm below, and
the following theorems make this discussion rigorous.

Algorithm 1. FLAGCOUNTER

Input: Patient Zero, i 2 V; Nodes S � V, Time Windows

W ¼ f½wj; wj þ Dj�gj2S , Flags fF ðjÞtotalð½wj; wj þ Dj�Þgj2S ,
threshold x.

Output: EPIDEMIC or NORMAL
for all j 2 S do
F ðS;WÞ  F ðS;WÞ þ F

ðjÞ
totalð½wj; wj þ Dj�Þ.

end for
if F ðS;WÞ � x then
returnNORMAL

else
return EPIDEMIC

end if

Algorithm. The FLAGCOUNTER algorithm takes as input the
set of nodes S to be considered, time windows W about
each node, and the full flag process Ftotal. It counts the flags
F ðS;WÞ raised by the nodes in S in windows W. if this is
above the threshold x, it declares an epidemic at node i at
time 0, otherwise it reports normal behavior.

We now give a meta-theorem that provides structure for
the main results of this paper. It expresses the following
simple idea. Given any set of nodes S and corresponding
window sizesW, let NðS;WÞ ¼Pj2S I

ðjÞðwj; wj þ DjÞ be the
number of infections that occurred in the windows. While
we cannot observe this number, in the sequel we bound it via
measure concentration. If NðS;WÞ is much bigger than the
variations in the number of flags, F ðS;WÞ seen at the nodes in
S during windowsW, then the probability of a false positive
is very small. By the same token, in the event of an epi-
demic, we see the flags due to epidemic, and to normal
behavior. If the latter cannot have big downward devia-
tions, compared to NðS;WÞ, then again the probability of
false negatives will be very small.

We define rt ¼ rtðS;WÞ ¼ E
P

j2S F
ðjÞ
normalðwj; wj þ DjÞ;

i.e., rt is the expected number of flags raised by nodes in S
during windows W under normal behavior. The set S is

MEIROM ET AL.: DETECTING CASCADES FROMWEAK SIGNATURES 315



often, as we shall later see, a subset of the neighbors of the
candidate patient zero. The index t is the close of the last
window, i.e., the latest observation time. The total window
lengths and the average window lengths are denoted
Wtotal ¼

P
j2S Dj ¼WavgjSj. Note that rt=m ¼ jSj �Wavg.

The following conditions essentially say that the win-
dows are not too big, and at the same time, they do capture
most of the epidemic-flags:

Key Conditions. (A) Wtotal, the total sum of the window
lengths, scales more slowly than the square of the number
of nodes in S, i.e., : Wtotal=m ¼ oðjSj2Þ. This implies that
Wavg ¼ oðjSjÞ. Let a > 0 be such that Wavg ¼ OðjSj1	aÞ. (B)
With probability 1	 �, where �! 01 in the number jSj of
nodes we consider, the windows specified in W capture a
significant number of the times when the nodes in S become
infected, i.e.,

P
j2S I

ðjÞðwj; wj þ DjÞ 
 jSj1	h for h 
 0. Trivi-
ally, reducing a reduces h as well; we need a fine balance
between these two quantities, a > 2h.

Theorem 3. Let S,W be given fixed sets. We run the algorithm
on the flag sequence generated by nodes in S in time windows
in W, using threshold value x ¼ rt þ r

1=2þ�
t =2, for

� ¼ a	 2hð Þ=2ð2	 aÞ. Assume conditions (A) and (B) hold.

� False Positives. The probability our algorithm declares
we have an epidemic, when in fact the flags are gen-
erated by normal behavior is exponentially small:
eIðtÞ � expð	 Sj j2�=3Þ:

� False Negatives. The probability our algorithm
declares we have no epidemic when in fact an epi-
demic began at node i at time zero, is exponentially
small: eIIðtÞ � expð	 Sj j2�=3Þ:

We can extend this result to the general case, in which the
algorithm continuously monitors the flag appearance for a
time duration T . Namely, we apply the FlagCounter algo-
rithm on every flag observed in every node in the network
during ½0; T þ t�. The following result immediately follows
using a union bound.

Theorem 4. Consider a network of size jV j, monitored over time
½0; T þ t�. The probability that an epidemic is falsely declared

(false positive) is bounded by 2jV j � T � expð	jSj a	2hð Þ=ð2	aÞÞ.
In particular, the FLAGCOUNTER algorithm succeeds when
S 2 vðlogx nÞ for exponentially long operating time, T ¼ Vj jy
for any y > 0.

We call this a meta-theorem because we have pushed the
work into checking Conditions (A) and (B). That is, its state-
ments become interesting only when we can characterize
when we can find node sets S and windows W that satisfy
the two assumptions with high probability, andwhenwe are
able to show that their size is controlled. Thus, in the sequel,
we consider various graph topologies, and show that Condi-
tions (A) and (B) are satisfied, and hence Theorem 3 holds,
while giving bounds on howmany nodes are infected by the
time we detect the infection. We note that this is primarily a
function of the topology of the network, which we therefore
try to understand. The parameter � controls how quickly
an infection spreads across a particular edge between an

infected and non-infected node. Indeed, it controls the
spreading rate, but it is less important in terms of controlling
the number of infected nodes we must allow before we can
detect an infectionwith high probability.

Accordingly, the remainder of this paper considers
specific graph topologies. In Section 5 we consider d-
dimensional grids, which model geometric graphs. In
Section 6 we consider Erd€os-Renyi graphs in the sparse
regime where a giant component emerges. In Section 7, we
consider graphs that have very high-degree hubs, such as
stars and power law graphs, and there we see the hub-prop-
erty suggests a more efficient algorithm.

5 GRIDS

Grids model geographic connections, where geographic
proximity and graph distance are correlated. In this section,
we consider the d-dimensional grid, and specialize the
meta-theorem above. We show that we can accurately
detect an epidemic before it spreads beyond a logarithmic
portion of the network.

Our main tool in tracking the epidemic frontier, is the so-
called Shape Theorem (Theorem 1.7 from [1]). As t increases,
it is clear that the footprint of the infection also expands.
Kesten’s results provides concentrations on the set of
infected nodes. Specifically [1] shows that for a given t, there
exist an inner shell and an outer shell, such that the all nodes
within the inner shell are infected and all nodes outside the
outer shell are not infected, with high probability. The differ-
ence between the radii of the shells is of order tgðdÞ, where
gðdÞ � 1 for every dimension d. We use this result of Kesten
[1] to pick the right windows about each node in the set, in
order to catch almost all the epidemic-flags. For every node i,
we set fi ¼ infftji 2 tL0g, where L0 is some primitive shape
that depends on the lattice dimension (see also Proposition 15
in Section 9 for amore formal statement).

Proposition 5. Pick l ¼ ðlognÞ1=d. Let S be the shell of outer
radius l and inner radius l=2: S ¼ fjjl=2 � dð~0; jÞ � lg.
Define the windows W about each node j 2 S as
½wj; wj þ Dj� ¼ ½fj 	 f0:6j ; fj þ fzj �, for z ¼ 1	 1

2dþ4ð Þ. Let t
denote the last time instant considered inW. Then in the event
of an infection initiating at node 0 at time 0, with high probabil-
ity at least half of the epidemic flags occur in the set S, in the
windowsW.

Putting this in the context of our Meta-Theorem, we have
the following:

Corollary 6. The conditions of the Meta-Theorem are satis-
fied with: (A) Wavg ¼ OðjSj1	aÞ, where 1	 a ¼ ð1	 1=
ð2dþ 4ÞÞ=d; and (B) with high probability, the windows W
capture at least half the epidemic flags in S, hence we can take
h ¼ 0. Therefore the epidemic is detected with high probability
before the infection travels farther than ðlognÞ1=d nodes from
its source, i.e., before more than polyðlognÞ nodes are infected.
In Section 9, we show further that by the final time t con-

sidered in W, with high probability, at most 1/2 of the
infected nodes lie outside of set S.

6 ERD€OS RENYI GRAPHS

We specialize our results to the sparse Erd€os Renyi graph
Gðn; pÞ, and show how to choose the algorithm parameters

1. We note that we do not need � to decay with any particular rate,
though for some of our results a fast rate is immediate.
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(the set S and windowsW) so that the meta theorem can be
applied. We assume that in the event of an epidemic, the
source node is part of a component of size QðnÞ. That is, we
assume that the network is past the percolation threshold,
np > 1, and that “patient-zero” is in the giant component.
We define the following constants: the mean degree is
d ¼ np, b ¼ d

d	1 > 1, and g ¼ d	 1ð Þ	1. Our results show
our algorithm converges correctly for d > 2.

We choose the set S as the set of nodes within a ball of
radius k � a logn about the source i, where the distance
metric is the hop-count, and for every node in this ball set
the window to be ½0; c � k�, irrespective of its distance
from the source. We take c large enough so that
IðcÞ ¼ c	 1	 log c > ð1þ �Þd. It is clear from this definition
that WavgjSj ¼ oðjSj1	aÞ for a ¼ 1	 � for any � > 0, and
therefore Condition (A) is satisfied. We next show that
Condition (B) is satisfied, namely, that the windows in W
capture many of the epidemic flags raised by nodes in S.
Like the grid setting, we also have h ¼ 0 for Condition (B),
i.e., all the nodes inside of S infected with high probability.

The proof outline is as follows, (for the full details see
Section 9). While we do not have a shape theorem as we do
in the grid setting, we do know that locally, Erd€os-Renyi
random graphs are trees; this allows us to leverage so-called
speed conditions on trees. We show that the set of nodes in
the ball S is bounded very close to what one would expect
for a d-regular depth k tree, namely, dk. We then show that
with high probability, by time ck (recall that we have re-
scaled time so that � ¼ 1) all nodes in S would be infected
in the event of an epidemic starting at node i. Finally, we
use the speed condition to show that not too many infected
nodes lie outside of S.
Proposition 7. Assume d > 2. Let S and W be as above. With

high probability, all nodes in S are infected inW. In particular,
the key conditions are satisfied with (A) a ¼ 1	 �; for any
� > 0, and (B) h ¼ 0.

This then gives us the following:

Corollary 8. In the event of an epidemic, we can detect it before it
travels more than a logn hops from its point of origin, and
therefore when a sublinear (vanishing) fraction of the total
nodes are infected.

7 HUB-FLAGCOUNTER ALGORITHM

Real world networks have been observed to have heavy
tails in their degree sequences, and much study has gone
into understanding the prevalence and properties of so-
called power-law graphs [20]. A key characteristic of such
graphs is a hub property: these graphs have a special collec-
tion of nodes called hubs, such that nearly every node is
close to one of these hubs, and these hub-nodes have signifi-
cantly higher degree than other nodes. The star network, cli-
ques and wheel graphs are all examples of easy-to-visualize
hub networks, while social networks, hyperlinks on the
world-wide-web, and the Internet AS graph are real-world
examples where empirically the power-law phenomenon
(and hence the presence of hubs) has been observed.
For such networks, one can dramatically improve on our
FLAGCOUNTER algorithm, by directly leveraging the presence
of the hubs.

The star graph is stylized, yet captures the essential two
properties of hub networks: wherever the epidemic begins,
it quickly spreads to the hub, and then a statistically detect-
able number of nodes become infected very soon after
that. This intuition suggests the following variation of the
FLAGCOUNTER algorithm. We call it the HUB-FLAGCOUNTER

algorithm:
Define a set H of hubs. For every flag in a node i 2 H,

shift time to 0, and count the number of flags in node i0 s
nearest neighbors within ½0;Di�. If this number exceeds xi,
declare an epidemic; else issue no warning. We can choose
the threshold xi to be a function of the degree of node i.

The HUB-FLAGCOUNTER algorithm needs to monitor only
the hubs for flags, unlike the FLAGCOUNTER algorithm which
tests every flag in every node. This improves the false positive
rate and reduces the computational resources required for
monitoring the network activity. Next, since we explore
extremely short windows, we have the potential to very rap-
idly detect an epidemic, compared to if we were to run
the FLAGCOUNTER algorithm. Finally, only information on the
nearest neighbors is required, rather than knowledge on the
flag appearance in the extended local environments.

The performance of the HUB-FLAGCOUNTER algorithm
depends on two key properties of the graph: how quickly a
node reaches a hub, and how many of the hub’s neighbors
are infected by the time the hub becomes infected. We illus-
trate the power of the HUB-FLAGCOUNTER algorithm com-
pared to the FLAGCOUNTER algorithm by considering an
extended-star-network on n nodes.

Extended Star Network. Let G ¼ ðV;EÞ be a network on
ðnþ 1Þ nodes, with 1 center node, and

ffiffiffi
n
p

spokes each of
length

ffiffiffi
n
p

, as depicted in Fig. 2. In this setting, the spread-
ing properties of an epidemic are highly dependent on the
location of patient zero, and the nodes to which the epi-
demic has spread. Initially, the epidemic spreads along the
spoke patient zero is on until it hits the hub. Once the center
(hub) node becomes infected, the rate of infection-flags sig-
nificantly increases, and many more flags appear in a very
short period of time. Thus, a good algorithm would define a
set S and windowsW to be topology-dependent, and more-
over, dependent on the (potential) evolution of the epi-
demic. One can think of the HUB-FLAGCOUNTER algorithm in
this context: it considers a set S only around the potentially-
infected hub, and considers a very short period of time.

To this end, in the above extended-star network, let S be
the hub and its 1-hop neighbors, so that jSj ¼ ð1þ ffiffiffi

n
p Þ.

Fig. 2. An extended star network with
ffiffiffi
n
p

spokes, each spoke having a line
of

ffiffiffi
n
p

nodes. The hub node has
ffiffiffi
n
p

neighbors. The HUB-FLAGCOUNTER

counts the number of flags within a window of interval D � Qð1Þ at each of
the neighbors of the hub node. The window begins at a random time t0 that
is the purported time of the infection hitting the hub.
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Recall that we have normalized time so that m, the rate of
normal flags, is equal to 1. The rate of infection is �. For
each of

ffiffiffi
n
p

one-hop neighbors, monitor it in the time win-
dow ½t0; t0 þ �	1d�, where t0 is the (purported) time of infec-
tion of the hub2. Since the infection spreads along each edge
as an exponential random variable with parameter �; it
immediately follows that a fixed neighbor of the hub mani-
fests an epidemic flag is ð1	 e	dÞ: Thus, a constant fraction
of the neighbors get infected within the chosen window; the
probability that this does not happen asymptotically goes to
0 (from Hoeffding’s inequality). With this choice of nodes
and windows, it is now clear that probability of detection
with HUB-FLAGCOUNTER goes to one, and that the false posi-
tive probabilities goes to zero. To see this, the expected total
number of normal flags scales as �	1d

ffiffiffi
n
p

; and the total num-
ber of epidemic flags, denoted by E½Pi2S I

ðiÞðt0; t0 þ �	1dÞ�;
scales as Qð ffiffiffinp Þ: Thus, the standard deviation of the
number of normal flags is oðE½Pi2S I

ðiÞðt0; t0 þ �	1dÞ�Þ; with
appropriate concentrations following from Hoeffding’s
inequality.

Finally, we note that by choosing d to be small (but con-
stant), we do not expect the epidemic to spread too far away
form the hub node during the interval ½t0; t0 þ �	1d�; specifi-
cally, the expected number of infected nodes in the network
is still Qð ffiffiffinp Þ:

It is worth comparing this to the FLAGCOUNTER algorithm. If
it is to choose S andW independently of topology and loca-
tion of initial detection, it must choose the time window to be
½0; �	1 ffiffiffi

n
p �: terminating earlier wouldmiss the scenario where

the epidemic begins far out on one of the spokes, while adjust-
ing the window to not begin at time 0 might miss most of the
infection signal, in the scenario where the epidemic begins at
or very close to the hub. While one can show that the FLAG-

COUNTER algorithm will successfully detect the epidemic, it
cannot guarantee to do so before a constant fraction of nodes
are infected. The HUB-FLAGCOUNTER algorithm, on the other
hand, succeeds in detecting the epidemic in the worst-case
when Oð ffiffiffinp Þ nodes have become infected – this is the case
when the epidemic starts far out on one of the spokes, and
the HUB-FLAGCOUNTER algorithm must wait until the infection
reaches the hub.

We demonstrate this further on so-called Forest Fire
graphs in Section 8. Forest Fire graphs are a class of random
graphs unlike Erd€os-Renyi graphs, that exhibit the presence
of Hubs. We show that in those less stylized examples, as
with the star example here, the HUB-FLAGCOUNTER algorithm
greatly outperforms the FLAGCOUNTER algorithm.

8 EXPERIMENTS

We simulate the performance of FLAGCOUNTER and HUB-
FLAGCOUNTER in various network settings. In the plots, n cor-
responds to network size, � is the SI epidemic spread rate,
and m is the rate of flags for the normal Poisson process at
each node. The inspected set size ism ¼ jSj.

Training. The theoretical analysis in Section 3 provides an
asymptotic prescription for all the parameters required for a
correct application of the algorithm. Nevertheless, for small

networks and predefined inspected set size, we have found
that the algorithms run well if we learn the optimal parame-
ters on a training set. For our experiments, we fixed the
inspected set size and time windows according to the
asymptotic prescription, and trained the various classifiers
on a training set composed of ns standard activity sessions
and ns epidemic scenarios. Unless specified otherwise, we
used ns ¼ 1000 for each scenario. The reported results were
obtained on a disjoint testing set, composed of the same
number of standard activity sessions and epidemic scenar-
ios. In any real scenario, the training set could be obtained
using either historical data, or simulated epidemic cascades
on the real topology.

Baseline Algorithm. As a baseline algorithm, we consid-
ered a threshold test applied on the flags over the entire net-
work in a given time window. Should this number exceed
the optimal threshold, as found on the training set, an epi-
demic state is declared. The optimal threshold in each sce-
nario was evaluated as above. We refer to this naive
algorithm as the GLOBALCOUNTER algorithm. We tested this
algorithm and found that the global counter algorithm
failed to achieve correct early diagnosis in challenging set-
tings where the FLAGCOUNTER and HUB-FLAGCOUNTER algo-
rithms performed very well (for example, Fig. 3).

Additional ImplementationDetails. For theHUB-FLAGCOUNTER

algorithm, a hub is a node with degree 
 logn½ �. The mean
error is defined as the average of the false positive and the
false negative probabilities. When a classifier was unable
to detect an epidemic before it infected a giant network com-
ponent of size an (here, a ¼ 0:75), the instance was declared a
false negative.

8.1 Random Networks

We tested our algorithms on different types of random net-
works exhibiting different characteristics: Erd€os-Renyi net-
works, and Forest Fire graphs.

Our theoretical results in Sections 6 and 7 provide an
understanding of when we would expect the FLAGCOUNTER

and HUB-FLAGCOUNTER algorithms to do well. We test them
both here, and present the results )error rates) in Fig. 3, on
the Gðn; p ¼ 3=nÞ. As our theoretical results from Section 6
predict, the FLAGCOUNTER does very well, with error rates
quickly going to zero in the size of the network. The
HUB-FLAGCOUNTER algorithm, however, does not share this

Fig. 3. The mean error rate of the FLAGCOUNTER algorithm on an Erd€os-
Renyi graph. The window function specified in Theorem 7 provides
superior results, regardless if the window width is 2log logm or log logm.
The HUB-FLAGCOUNTER performs fairly well, while the GLOBALCOUNTER

algorithm has a success rate close to a random guess.

2. Note that since we do not know t0, we run a parallel instance of
HUB-FLAGCOUNTER each time we see a flag at the hub.
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success. As detailed in Section 7, the HUB-FLAGCOUNTER algo-
rithm is able to detect an epidemic only once it hits a hub.
By altering the definition of a hub based on node degree, we
can tradeoff between accuracy and the expected infected
fraction before detection. However, as an Erd€os-Renyi net-
work does not have a heavy tail; even by carefully choosing
the definition of a hub, the HUB-FLAGCOUNTER seems unable
to drive error rates to zero.

We display the tradeoff between false positive and false
negative error rates for the FLAGCOUNTER algorithm on the
6,000-node Erd€os-Renyi graph in Fig. 4, where we give the
ROC curve. Our results show that the algorithm achieves
very low false positive and false negative error rates.

The Forest Fire Model. The degree distribution of many
real-world networks follows a power law, and therefore
such networks are not well-modeled by an Erd€os-Renyi
graph.

The Forest Fire random network model [7], [21], was
devised in order to incorporate numerous statistical attrib-
utes of real world networks, including degree distributions
one does not observe in an Erd€os-Renyi graph. We chose
the forward-burning and the back-burning probabilities of
the Forest Fire model as (0.37,0.32), as this configuration cor-
responds to slowly densifying networks. As this network
typically has a large number of well-connected hubs, one of
the first infected nodes after a contagion outbreak is likely
to be a hub.

We compare our FLAGCOUNTER and HUB-FLAGCOUNTER

algorithms on networks generated in this way, and provide
the results in Fig. 5. We see that the plots perform as our the-
ory from Section 7 would suggest. The overhead in infected
nodes and detection time of the HUB-FLAGCOUNTER algorithm
is low, and accordingly, this algorithm is able to quickly
drive the error rates to zero, without requiring many nodes
to become infected. This is in contrast to the FLAGCOUNTER

algorithm’s performance, even with our best efforts to tune
window sizes (we plot two different parameters).

8.2 Real World Networks

In this section, we consider two real-world networks.
The first, is the Internet graph, which is made up of 27,894
nodes. The second considers the communication graph
made up of 33,969 unique email addresses from the Enron
network. Using these networks, we explore the advantages

in performance, but also the susceptibility to noise, of the
HUB-FLAGCOUNTER algorithm, as described in Section 7.

Misconfiguration of Internet router, also known as BGP
attacks, are often characterized by an increase in packet drop
out. However, drop outs occur naturally in the Internet due
to various reasons, e.g., shutdown of servers and links for
maintenance. In many settings, it is essential to have an
extremely low false negative probability, while allowing for
a minimal rate of false positives. Our algorithms may be
applied in order to differentiate such attacks from normal
activity. We test our two algorithms in such a scenario on the
Internet graph. We performed a training on a short interval
of duration 0.2 time units (the random flag rate was scaled to
one), and optimized the threshold for very lowvalues of false
negative probability (less than 0.03). Then, we measured the
mean number of false positive counts for operating duration
of up to 10 times of the training duration. We present the
false positive counts per Autonomous System (AS) in Fig. 6.

Recall the intuition HUB-FLAGCOUNTER algorithm—once a
hub gets infected, a strong “signal” results soon-after due to
a sudden increase in the number of infected nodes. The
Internet is known for having a large number of high-degree
nodes (hubs) such as Tier 1 or Tier 2 ASs; this thus provides
a good setting to empirically evaluate the HUB-FLAGCOUNTER

algorithm (as discussed in Section 7).
Indeed in our empirical study in Fig. 6, the HUB-

FLAGCOUNTER provided perfect classification and zero false

Fig. 4. The ROC curve for the Erd€os Renyi network Gðn ¼ 6000; p ¼
3=nÞ, when using the FLAGCOUNTER Algorithm. The inspected set size
is log 2ðnÞ.

Fig. 5. The mean error rate on an Forest Fire network for various win-
dowing schemes. The HUB-FLAGCOUNTER algorithm provided to be best-
in-class, even as the inspected set size of the flag counter was increased
to log 3n=2.

Fig. 6. Internet Graph: The false positive per node error rate as a func-
tion of time after on the Internet graph, composed of 27,894 nodes. The
training session consisted of 250 trials, and each testing session had
100 trials.
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positive counts in all trials. This plot suggests that on amoder-
ate size network, with a few tens of thousands of nodes, the
application time of our algorithm can be a few orders of magni-
tude longer than the training time, with just a few false positive
alarms. Thus, this empirical study bears out the intuition
motivating theHUB-FLAGCOUNTER developed in Section 7.

We next consider the performance of our algorithms on
the Enron graph. This graph models communication
between nodes, and hence is appropriate to study the poten-
tial for malware to spread from node to node.

A stealthy malware may be difficult to spot. One possible
approach to cloak malware activity is to reduce the fre-
quency of resources it consumes, or even to stay dormant
for long periods of time. This behavior could be simulated
by changing the ratio of the normal flag rate to the epidemic
speed. As this increases, the signal (flags from the epidemic
spreading) gets weaker compared to the noise (the normal
flag process). We investigate the performance of our algo-
rithms in this setting, i.e., as the activity rate of the malware
decreases. Fig. 7 shows the performance of our algorithms
on a network of 33,969 emails addresses. In this network
[22] (Enron dataset), two addresses are linked if an email
was sent from one to the other. This figure shows that the
FLAGCOUNTER algorithm has a very weak linear dependence
on the malware spreading speed, and operates well even as
the appearance rate of the random flags is 25 times greater
than the infection rate m. Namely, the algorithm can suc-
cessfully identify the malware, even when its activity is
highly concealed by normal activity.

On the other hand, we see that theHUB-FLAGCOUNTER algo-
rithm is more sensitive to increased levels of noise. The fluc-
tuations in the number of flags during normal activity scales
with the square root of the inspected set size. Since the HUB-
FLAGCOUNTER inspects a smaller environment, it is prone to
such fluctuations, and as the flagging density increases, its
performance deteriorates faster than the FLAGCOUNTER algo-
rithm. Nevertheless, in absolute terms, its error remains low
even when the epidemic spreading speed is extremely slow
compared to the normal activity flagging speed.

9 PROOF DETAILS

9.1 Meta-Theorem

In this section we prove our meta-theorem (Theorem 3). For
convenience, we restate the relevant definitions here.

Definition 9. Given a set of nodes S and corresponding window
sizesW, let NðS;WÞ ¼Pj2S I

ðjÞðwj; wj þ DjÞ be the number
of infections that occur in the windows. We define rt ¼
rtðS;WÞ ¼ E

P
j2S F

ðjÞ
normalðwj; wj þ DjÞ; i.e., rt is the

expected number of flags raised by nodes in S during windows
W under normal behavior. The index t is the close of the last
window, i.e., the latest observation time. We also define the
total window lengths and the average window lengths by
Wtotal ¼

P
j2S Dj ¼WavgjSj. Note that rt=m ¼ jSj �Wavg.

For convenience, we term a flag that was generated
by the epidemic process upon infection an epidemic-flag,
while all other flags are called normal-flags. Obviously, the
epidemic-flags are indistinguishable from the normal-flags.

The following lemma bounds the false positive probabil-
ity eIði; tÞ of the hypothesis testing sub-problem. It is an
immediate application of the Chernoff bound.

Lemma 10. Consider an inspected set S and windows W. The
probability that the total number of normal-flags in the corre-
sponding time windows exceeds rt þ r1	yt or is less than
rt 	 r1	yt is bounded by expð	r1	2yt =3Þ. Namely,

P
X
j2S

F
ðjÞ
normalðwj; wj þ DjÞ 	 rt

�����
�����
r1	yt

 !
� expð	r1	2yt =3Þ:

Proof. A) First, we rescale all the normal-flag Poisson pro-
cesses. For every node j 2 S, we set D0j ¼ mjDj. Then, the
number of normal-flags in ½wj; wj þ Dj� is distributed
according to a Poisson process with rate 1 and duration
D0j. The total number of normal-flags is distributed as a
Poisson process with rate 1, applied for a duration ofX

j2S
D0j ¼

X
j2S

mjDj ¼ rt:

The expected number of flags is rt. Set x ¼ r1	yt =rt ¼ r	yt .
Using a standard concentration inequality for Poisson
processes, we have

P
X
j2S

F
ðjÞ
normalðwj; wj þ DjÞ 	 rt

�����
����� > r1	yt

 !
� exp 	rtHðxÞð Þ

� exp 	r1	2yt =3
� �

;

where x ¼ r	yt , and HðxÞ ¼ 1þ xð Þlog 1þ xð Þ 	 x. The
last inequality follows since as rt !1, x! 0 and
HðxÞ ¼ x2=2	Oðx3Þ. tu
The FlagCounter algorithm dictates a specific choice of

time slice windows which may depend on the purported
source node. Hence, in general, for every node j and source
node i, we have wj ¼ wjðiÞ, and Dj ¼ DjðtÞ, though for sim-
plicity, we omit the explicit dependence on the source node
i in the following.

Definition 11. Recall that
P

j2S Ijðwj;wj þ DjÞ denotes

the number of epidemic flags that fall in the inspected time win-

dow. Let � denote the probability that this number is less than
jSj1	h, i.e.,

� , P
X
j2S

Ijðwj;wj þ DjÞ � jSj1	h
 !

:

Fig. 7. Enron Graph: The mean classification error as a function of the
ratio of normal activity flagging rate to the epidemic speed. The normal
activity rate was scaled to one. The plot was generated using 150 epi-
demic cases and 150 normal activity sessions as a training session,
repeated by an identical validation session.
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We now turn to analyze the false negative probability.
The following lemma states that if our choice of windows
and inspected set S is such that we catch at least jSj1	h=2
epidemic-flags out of the maximal value of jSj epidemic-
flags, then the false negative probability tends to zero.

Lemma 12. Assume an epidemic has started from node i.
Consider the FlagCounter algorithm with threshold x ¼ rtþ
r
1=2þ�
t =2, for � ¼ a	 2hð Þ=2ð2	 aÞ. Assume that the probabil-
ity that less than jSj1	h are detected is � and �! 0, and
1	 a > h. Then, the false negative probability satisfies

eIIðt; iÞ � expð	 Sj j a	2hð Þ=ð2	aÞÞ þ �:

Proof. The algorithm successfully classifies an epidemic if
there occurred at least x ¼ rt þ r

1=2þ�
t =2 flags in the speci-

fied windows. The probability that less than Sj j1	h
epidemic-flags were detected is bounded by � which goes
to zero in jSj, and thus eIIðt; iÞ is bounded by

P
X
j2S

F
ðjÞ
normalðwj; wj þ DjÞ � ri þ r

1=2þ�
t 	 Sj j1	h

2
	 Sj j

1	h

2

 !
:

þ �

Since Sj j1	h 2 v r
1=2þ�
t

� �
, we have

eIIðt; iÞ � exp 	 Sj j a	2hð Þ=ð2	aÞ
� �

;

by Lemma 10. tu
The Meta-Theorem (Theorem 3) is an immediate result of

the last two lemmas. The Meta-Theorem Corollary then fol-
lows by noting that the total number of normal flags raised
across the network in an interval ½0; T � concentrates expo-
nentially in T jV j. the theorem and union bound then gives
the proof of the corollary.

9.2 Grids

In this section we discuss the case of a d dimensional
grid. We show that we can specify an inspected set S
and corresponding windows such that the probability
that we observe at least jSj=2 epidemic-flags tends to 1
exponentially.

Our main tool is the result from Theorem 1.7 in Kesten
[1] which shows that for a given t, there exists an inner shell
and an outer shell, such that all nodes within the inner shell
are infected and all nodes outside the outer shell are unin-
fected. The difference between the radii of the shells is of
order tgðdÞ, where gðdÞ � 1 for every dimension d. We restate
here an immediate corollary of Kesten’s theorem. For sim-
plicity of notation, we assume the initial infection time is at
t0 ¼ 0 and the source of the epidemic is at the origin.

For a given set A 2 Rd, and x 2 R, the set xA is
the set resulting from bloating A by a factor x;

xA ,
n
~r 2 Rd

��� ~jrj=x 2 Ao.
Theorem 13. [Kesten] [1] There exists a set L0 and constants c1

to c5 such that for x ¼ tb for any constant 0:5 
 b > 0,

P SðtÞ � 1þ x=
ffiffi
t
p� �

tL0

n o

 1	 exp 	c1xð Þ;

and

P SðtÞ 
 1	 c3t
	1= 2dþ4ð Þ

� �
tL0

n o

 1	 exp 	c2t

dþ0:9
2dþ4

� �
;

for large t t!1ð Þ.
Definition 14. For every node i, set fi ¼ infftji 2 L0tg.

We use Kesten’s theorem to pick the right window sizes.

Proposition 15. Pick m 2 vð1Þ, and set l ¼ m1=d. Let S be
the shell of outer radius l and inner radius l=2:
S ¼ fjjl=2 � dð~0; jÞ � lg. Define the windows W about
each node j 2 S as ½wj; wj þ Dj� ¼ ½fj 	 f0:6

j ; fj þ fz
j �, for

z ¼ 1	 1
2dþ4ð Þ. Let t denote the last time instant considered

inW. Then in the event of an infection initiating at node 0
at time 0, with high probability at least half of the epi-
demic flags occur in the set S, in the windowsW.

Proof. We denote the set of nodes infected by time t as
A0ðtÞ. The probability that an epidemic-flag did not occur
in j before wj is greater than the probability that at time
t ¼ wj the infection is contained within the shape fjL0.

P Ijð0;wjÞ ¼ 0
� � 
 P AðwjÞ � fjL0

� �
:

Using our choice of wj ¼ fj 	 f0:6
j ,

fj 
 wj þ w0:6
j :

Substituting fj ¼ 1þ x=
ffiffi
t
p� �

t and t ¼ wj in Kesten’s the-
orem, we have

1þ x=
ffiffiffiffiffiffi
wj
p� �

wj 
 fj:

Using our choice of wj ¼ fj 	 f0:6
j , we have

fj 
 wj þ w0:6
j :

Namely,

1þ x=
ffiffiffiffiffiffi
wj
p� �

wj 
 wj þ w0:6
j :

Solving for x;

x 
 w0:1
j

and using Kesten’s theorem (Theorem 13), we have

P LðwjÞ � fjL0

� � 
 1	 exp 	c1w0:1
j

� �
;

where the ci are constants. Therefore, the probability that
an epidemic flag precedes the specified window, is

P Ijð0;wjÞ ¼ 1
� � � exp 	c1w0:1

j

� �
:

Similarly, the probability that an epidemic-flag in node j
is observed by time wj þ D is

P Ijð0;wj þ DÞ ¼ 1
� � 
 P Aðwj þ DÞ 
 fjL0

� �
:

Since wj þ Dj ¼ fj þ fz
j , where

z ¼ 1	 1

2dþ 4ð Þ : (1)

MEIROM ET AL.: DETECTING CASCADES FROMWEAK SIGNATURES 321



we have, using the second inequality in Kesten’s
theorem,

P Aðwj þ DÞ 
 fjL0

� � 
 1	 exp 	c2 wj þ Dj

� �dþ0:9
2dþ4

� �
:

Therefore, the probability an epidemic-flag in node i is
not observed by time wi þ D is bounded by

P Ijðwj; 0Þ ¼ 0
� � � exp 	c2w0:3

j

� �
;

for all d > 1. By using a union bound, the probability
that a flag is not detected in node i in the associated win-
dow is bounded by 2 expð	c2w0:1

j Þ, with c3 ¼ minfc1; c2g.
Hence, we can define a random indicator variable Xi

for each node i, indicating that an epidemic flag was
not detected in node i. The success probability
pi , PrðXi ¼ 1Þ satisfies

pi � 2 exp 	c3w0:1
j

� �
:

Recall that the volume of a d dimensional sphere is

v ¼ pd=2

G 1þ d=2ð Þ :

Note that as wj monotically increases with dð0; jÞ, we
have wj � dð0; jÞ=2, and in particular

pj � 2 exp 	c3l0:1
� �

;

for some c3: For convenience, p0 , 2 exp 	c3l0:1ð Þ:
Next, we show that the probability that less than jSj=2

epidemic-flags are detected tends to zero for n!1: The
latter (see definition) is bounded by using Markov’s
inequality,

�ða;S;WÞ � P G � jSj=2ð Þ

� P
X
i2S

Xi > jSj=2
 !

� 2jSjmaxi2Spi
jSj � 2p0

! 0

since and p0 ! 0.
In conclusion, we have proved that for our specific

choice of S and windows, the probability that less than
jSj=2 epidemic flags are not detected tends to zero. tu
Note that in order for Theorem 3 to hold, we may pick

S 2 vð1Þ. However, in order for Theorem 4 to hold we
must pick S 2 v logx nð Þ for some x, or equivalently,
m 2 v logx nð Þ.

9.3 Erd€os-Renyi Graphs

We now show how to choose the algorithm parameters for
the Erd€os-Renyi graph Gðn; pÞ. We shall assume, should an
epidemic arise, that the source node is part of a connected
component of size QðnÞ. That is, we assume that the net-
work is past the percolation threshold, np > 1, and that
“patient-zero” is in the giant component. To simplify nota-
tion, we assume time is rescaled so that we can take � ¼ 1,
i.e., the infection virulence is normalized. We use d ¼ np to
denote the average degree of the graph.

constants g and c so that g � 1 – in particular so that
2cg log d� 1, and c large enough so that IðcÞ ¼ c	 1	
log c > log d. For a fixed i 2 V, let the set S ¼ Sk be the
nodes of depth (distance) up to k from i. We assume that
k < g logn, where n is the total number of nodes in our
graph. Choose the window sizes uniformly across nodes as
½wj; wj þ Dj� ¼ ½0; ck�.

We need to show that under the epidemic scenario
(beginning at node i), most of the nodes in S become
infected in the specified window period. This guarantees
that the “signal” will be strong enough, and hence our
detection algorithm will succeed. Then, in order to certify
that we have succeeded in performing early detection, we
need to guarantee that not too many nodes outside S have
become infected.

The key technical result we require is an upper and lower
bound on the number of elements in the set S.
Lemma 16. For any � > 0, the set S of nodes a distance at most

g logn from the root node i satisfies: ðdð1	 �ÞÞk � jSj �
ðdð1þ �ÞÞk, w.h.p. in n.

This follows from concentrations in the neighborhood
growth rate of random graphs, e.g., Lemma 5.16 in [20].
In particular, choosing g small enough (recall k < g logn)
guarantees that subset S is in fact a tree of average degree d
(see also [23]).

Using this, a simple union bound reveals that with high
probability, all nodes in S are infected by time ck. Indeed,
for any node v 2 S, it is at most k hops away from the root
node, and hence the probability it is not infected in ½0; ck� is
the probability that k rate-one exponentials sum to more
than ck, i.e., forXj � expð1Þ, iid,

Pð
Xk
j¼1

Xi > ckÞ � expð	kIðcÞÞ;

where IðcÞ ¼ 1	 c	 log c is the rate-function of a rate-one
exponential. Now a union bound combined with the upper
bound of the above lemma reveals that all nodes in S
are infected with probability at least 1	 expð	kðIðcÞ	
log dð1þ �ÞÞÞ. Choosing c so that IðcÞ > log dð1þ �Þ, the
probability of all nodes in S being infected goes to 1 expo-
nentially in k. Thus Condition (B) is satisfied with h ¼ 0;
moreover, that k < log jSj, and therefore Condition (A) is
satisfied, as claimed in Proposition 7 with any a < 1.

Finally, consider the set of nodes that are infected by the
last time considered, i.e., by time ck, and denote this set by
Ŝ. The speed condition for Erd€os-Renyi random graphs [17]
shows that Ŝ must be contained in a ball of radius at most
1:1ck centered at the root (node i). By the lemma above,
however, this ball contains at most ð1þ �Þd1:1ck nodes. Since
k < g logn, the depth is at most 2cg logn, and since (by our
choice) g satisfies 2cg log d < 1, this implies, in particular,
that at most a vanishing fraction of the network has been
infected by time ck.

10 ADDITIONAL DETAILS AND EXPERIMENTS

In this section we revisit the Erd€os-Renyi graph and the
FLAGCOUNTER algorithm, and demonstrate better results
using more refined window selection techniques.
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Window Selection Variants. In Section 5we have considered
a particular network, a d	 dimensional grid, in which both
the start time wj and the window width Dj are an increasing
function of node j’s distance from the source. We call this
choice of windows, in which the window parameters are a
function of the distance, peeled windows. On the other hand,
in Section 6 an alternative scheme has been presented. In this
scheme, both the window start time and the window width
do not depend on the distance from the source, namely, it is

a fixed window scheme. This choice proved successful, since
for small environments, an Erd€os-Renyi network is approxi-
mately a tree. For a constant degree tree (with d > 1), a con-
stant fraction of the nodes are at the leaves. It is therefore
sufficient to detect only the epidemic generated flags at the
outer shell of the tree. In fact, we might hope to get a better
signal to noise ratio by considering a test based on the flag
activity at this outer shell only, and disregard all events in
the lower shells. This suggest a third scheme, an exterior shell
windowing scheme, in which the window width is zero for
all nodes except nodes on the exterior shell of the inspected
set. In the peeled windows and exterior shell windowing
schemes, for every node j at distance d from the source,
we set m ¼ mðjÞ to be the number of nodes in the d	 1
ball about the source node. This applies to the window func-
tions ½wj;wj þ Dj� ¼ � 1	 cð Þð Þ	1 logm=4þ a log logn½	1; 1�ð Þ
where a ¼ 0:5 and a ¼ 1.

In all schemes the windows are set according to the num-
ber of neighbors in the d-shells about the source (a d-shell is
the set of nodes at distance d from the source). This requires
the enumeration of the d shells of a source for every raised
flag. Alternatively, an approximation can be obtained by
replacing the exact, node-specific values, by their mean net-
work values. As can be seen in Figs. 8, 9, and 10, this
approximation works well for short time windows, but per-
formance deteriorates for large windows.

We applied different windowing schemes using different
window function. Figs. 8, 9, and 10 describe the results,
while Table 1 present the values with the corresponding
standard deviations. The FLAGCOUNTER algorithm works
well in all schemes, while there is no scheme which saves
the other algorithms from an unacceptable classification
rate. Note that it is reasonable that the error rate may be

Fig. 8. The mean error rate of the FlagCounter algorithm on an
Erd€os-Renyi graph. These plots represent the error in an exterior shell
windowing scheme.

Fig. 9. The mean error rate of the FlagCounter algorithm on an Erd€os-
Renyi graph. These plots represent the error in the fixedwindow scheme.

Fig. 10. The mean error rate of the various algorithms on an Erd€os-Renyi
graph. These plots represent the error in the peeled windows scheme.

TABLE 1
The Mean Error and Corresponding Standard Deviations in the Peeled Windows Detection Scheme

n 1000 2000 6000 8000

�	1ðdþ ffiffiffi
d
p ½	1; 1�Þ 0:610� 0:163 0:631� 0:196 0:729� 0:276 0:744� 0:300

�	1dþ ½	1; 1� 0:350� 0:237 0:273� 0:250 0:176� 0:238 0:160� 0:232
Approximate FlagCounter, D ¼ 2�	1g log logm 0:099� 0:190 0:068� 0:154 0:070� 0:160 0:049� 0:123
Approximate FlagCounter, D ¼ �	1g log logm 0:014� 0:065 0:014� 0:072 0:013� 0:063 0:008� 0:042
FlagCounter, D ¼ 2�	1g log log m 0:028� 0:113 0:005� 0:050 0:002� 0:027 0:002� 0:027
FlagCounter, D ¼ �	1g log logm 0:002� 0:022 0:002� 0:016 0:001� 0:001 0:001� 0:001
Global Counter, D ¼ 4�	1 0:401� 0:200 0:430� 0:173 0:498� 0:032 0:497� 0:042
Hub-FlagCounter, D ¼ �	1 0:040� 0:061 0:034� 0:087 0:096� 0:114 0:117� 0:125

Fig. 11. The mean error rate of the various algorithm on an Erd€os-Renyi
graph with an inspected set size of 3logn. These plots represent the
error in the peeled windows scheme. The error is fairly high, and does
not seem to tend to zero.
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greater than 0.5, due to the early detection requirement and
that the performance was evaluated on a twice longer oper-
ating time than the training session.

We also check the performance with small inspected sets
(in Fig. 11), of size scaling as logn, and we see again that for
such small size, the error rates are high and do not seem to
tend to zero.

11 CONCLUSION

The central message of this work is that if an epidemic (mal-
ware, or otherwise) spreads, even if it does so with extreme
stealth so that locally it is statistically undetectable, it leaves
a signature of its presence encoded in the very network it
uses to spread. Put differently, the network that spreads the
epidemic also correlates extremely weak signals across the
network, and if this pattern can be identified, the weak signal
can be revealed. Our results cover various different settings
and topologies, including grids and random graphs, and
provide efficient, light-weight algorithms that can detect
epidemicswith error rates quickly tending to zero. Questions
of robustness, network homogeneity, and adversarially
adapted malware or other network agents are natural direc-
tions to consider in this extreme low-information regime.
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